Sākums

1.2.2.3.0. Vjeta formulu lietošana


LV.AMO.2003.8.1

Vienādojumiem \(x^{2}+p_{1}x+q_{1}=0\), \(x^{2}+p_{2}x+q_{2}=0\) un \(x^{2}+p_{3}x+q_{3}=0\) ir attiecīgi saknes \(x_{0}\) un \(x_{1}\), \(x_{0}\) un \(x_{2}\), \(x_{0}\) un \(x_{3}\). Izteikt vienādojuma \(x^{2}+\frac{p_{1}+p_{2}+p_{3}}{3} x+\frac{q_{1}+q_{2}+q_{3}}{3}=0\) saknes ar \(x_{0},\ x_{1},\ x_{2}\) un \(x_{3}\), nelietojot kvadrātsaknes zīmi.

Vairāk...

LV.AMO.2019.9.5

Vai eksistē tāds kvadrātvienādojums ar veseliem koeficientiem, kuram ir sakne

\[(\sqrt{2020}-2 \sqrt{2019}+\sqrt{2018})(\sqrt{2020}+\sqrt{2019})(\sqrt{2019}+\sqrt{2018})(\sqrt{2020}+\sqrt{2018})?\]

Vairāk...

LV.AMO.2024.9.1

Doti reāli skaitļi \(a\) un \(b\), kuriem

\[\frac{a}{a^{2}-5}=\frac{b}{5-b^{2}}=\frac{a b}{a^{2} b^{2}-5}.\]

Kāda var būt izteiksmes \(a^{4}+b^{4}\) vērtība, ja papildus zināms, ka \(a+b \neq 0\)?

Vairāk...