Divi vienādmalu trijstūri novietoti plaknē kā parādīts 15. att. Zināms, ka \(\sphericalangle CAD = \alpha\) un \(\sphericalangle FDJ = \beta\). Izsaki leņķi \(CGF\) ar \(\alpha\) un \(\beta\).
Dots trijstūris \(ABC\), kuram \(AB>AC>BC\). Virsotnes \(A\) blakusleņķa bisektrise krusto malas \(BC\) pagarinājumu punktā \(D\), bet virsotnes \(C\) blakusleņķa bisektrise krusto malas \(AB\) pagarinājumu punktā \(E\). Zināms, ka \(AD=AC=CE\). Aprēķināt trijstūra \(ABC\) leņķus!
Trijstūrī viens leņķis ir par \(120^{\circ}\) lielāks nekā otrs. Pierādīt, ka bisektrise, kas vilkta no trešā leņķa virsotnes, ir divas reizes garāka nekā augstums no tās pašas virsotnes!