Sākums

4.1.1.1.1. Dalāmības pazīmes ar 2, 4, 8

Skaitlis dalās ar \(2^k\) tad un tikai tad, ja pēdējie \(k\) cipari dalās ar \(2^k\)


LV.AMO.2019.7.5

Kādai mazākajai naturālai \(n\) vērtībai skaitli \(10^{n}\) iespējams izteikt kā septiņu naturālu skaitļu reizinājumu tā, lai to visu pēdējie cipari ir dažādi (tas ir, nevienam no tiem pēdējais cipars nesakrīt ar kāda cita skaitļa pēdējo ciparu)?

Vairāk...

LV.AMO.2023.7.2

Kāds ir lielākais iespējamais septiņciparu skaitlis, kuram vienlaicīgi izpildās šādi nosacījumi:

Vairāk...

LV.AMO.2006.8.3

Naturāla skaitļa \(x\) ciparu summu apzīmēsim ar \(S(x)\). Pieņemsim, ka \(n\) - tāds naturāls skaitlis, kam vienlaicīgi izpildās īpašības \(S(n)=10\) un \(S(5n)=5\).

(A) atrodiet kaut vienu tādu skaitli,
(B) vai tādu skaitļu ir bezgalīgi daudz?
(C) vai kāds no tādiem skaitļiem ir nepāra?

Vairāk...

LV.AMO.2019.8.5

Kādai mazākajai naturālai \(n\) vērtībai skaitli \(10^{n}\) iespējams izteikt kā sešu naturālu skaitļu reizinājumu tā, ka neviens no tiem nav mazāks kā \(10\) un to visu pēdējie cipari ir dažādi (tas ir, nevienam no tiem pēdējais cipars nesakrīt ar kāda cita skaitļa pēdējo ciparu)?

Vairāk...

LV.AMO.2022B.8.1

The following text was written on the board: \(N597M\). Each of the letters \(N\) and \(M\) should be replaced by a digit (they may or may not be the same) so that the resulting five digit number is divisible by \(12\). In how many ways can you do this?

Vairāk...

LV.AMO.2022B.8.1

Uz tāfeles bija uzrakstīts šāds teksts: \(N597M\). Katrs no burtiem \(N\) un \(M\) jāaizstāj ar vienu ciparu (tie var būt arī vienādi) tā, lai iegūtais piecciparu skaitlis dalītos ar \(12\). Cik dažādos veidos to var izdarīt?

Vairāk...

LV.NOL.2016.8.2

Karlīna uzrakstīja divus skaitļus, kuru pierakstā nav izmantots cipars \(0\). Katru ciparu viņa aizstāja ar burtu: dažādus ciparus - ar dažādiem burtiem, vienādus - ar vienādiem. Viens no uzrakstītajiem skaitļiem \(DUBĻUNNN\) dalās ar \(104\). Pierādi, ka otrais skaitlis \(BURBUĻUVANNA\) nedalās ar \(56\).

Vairāk...

LV.NOL.2017.10.5

Desmitciparu skaitlī vienādus ciparus aizvietojot ar vienādiem burtiem, bet dažādus- ar dažādiem, ieguva vārdu MATEMĀTIKA (īsais " \(A\) " un garais " \(Ā\) " aizstāj atšķirīgus ciparus). Papildus zināms, ka skaitlis \(\overline{MA}\) dalās ar \(2\), \(\overline{MAT}\)- ar \(3\), \(\overline{MATE}\)- ar \(4\), \(\overline{\text { MATEM }}\)- ar \(5\), \(\overline{MATEM \bar{A}}\)- ar \(6\), \(\overline{MATEM \bar{A}T}\)- ar \(7\), \(\overline{MATEM \bar{A}TI}\)- ar \(8\), \(\overline{MATEM \bar{A}TIK}\)- ar \(9\), \(\overline{MATEM \bar{A}TIKA}\)- ar \(10\). Noteikt, kāds bija sākotnējais desmitciparu skaitlis!

Vairāk...

LV.NOL.2019.10.5

Atrast visus pirmskaitļu pārus \((m, n)\), kuriem \(20m+18n=2018\).

Vairāk...

LV.VOL.2017.10.2

Dots pirmskaitlis, kas satur vismaz \(4\) dažādus ciparus. Pierādīt, ka tā ciparus var pārkārtot citā secībā tā, lai jauniegūtais skaitlis nebūtu pirmskaitlis!

Vairāk...

LV.VOL.2018.10.3

Skaitļus \(a,\ b,\ c\) sauksim par skaistu trijnieku, ja tiem piemīt šādas īpašības:

Piemēram, skaists trijnieks ir \(8,\ 9,\ 10\).

(A) Atrast tādu skaistu trijnieku, kurā mazākais skaitlis ir lielāks nekā \(10\).

(B) Pierādīt, ka eksistē bezgalīgi daudz skaistu trijnieku!

Vairāk...