Dots, ka divi spēlētāji spēlē spēli, pārmaiņus izdarot. Jāizstrādā uzvarošā stratēģija kādam no spēlētājiem vai jānoskaidro, kurš no spēlētājiem uzvar, pareizi spēlējot. Šajā kategorijā neietilpst skaitļu teorijas spēles, kur gājieni ir veselu skaitļu vai to ciparu manipulācijas.
Divi spēlētāji pamīšus raksta uz tāfeles pa vienam naturālam skaitlim no \(1\) līdz \(9\) ieskaitot. Nedrīkst rakstīt skaitļus, ar kuriem dalās kaut viens jau uzrakstīts skaitlis. Kas nevar izdarīt gājienu, zaudē.
Parādiet, kā tas, kas izdara pirmo gājienu, var uzvarēt.
Divi spēlētāji pamīšus raksta uz tāfeles pa vienam naturālam skaitlim no \(1\) līdz \(9\) ieskaitot. Nedrīkst rakstīt skaitļus, ar kuriem dalās kaut viens jau uzrakstīts skaitlis. Kas nevar izdarīt gājienu, zaudē.
Parādiet, kā tas, kas izdara pirmo gājienu, var uzvarēt.
Jānis un Anna spēlē šādu spēli. Uz tāfeles ir uzrakstīts naturāls skaitlis. Spēlētāji pēc kārtas veic gājienu: no uzrakstītā skaitļa atnem kādu šī skaitļa ciparu (izņemot \(0\)), nodzēš uz tāfeles esošo skaitli un tā vietā uzraksta iegūto starpību. Uzvar tas, kurš pēc sava gājiena iegūst nulli.
Sākumā ir uzrakstīts skaitlis \(2011\), pirmo gājienu izdara Anna. Kurš no spēlētājiem, pareizi spēlējot, uzvarēs? Apraksti, kā uzvarētājam jārīkojas!
Jānis un Anna spēlē šādu spēli. Uz tāfeles ir uzrakstīts naturāls skaitlis. Spēlētāji pēc kārtas veic gājienu: no uzrakstītā skaitļa atnem kādu šī skaitļa ciparu (izņemot \(0\)), nodzēš uz tāfeles esošo skaitli un tā vietā uzraksta iegūto starpību. Uzvar tas, kurš pēc sava gājiena iegūst nulli.
Sākumā ir uzrakstīts skaitlis \(2011\), pirmo gājienu izdara Anna. Kurš no spēlētājiem, pareizi spēlējot, uzvarēs? Apraksti, kā uzvarētājam jārīkojas!
Uz galda atrodas \(k\) konfektes. Andris un Juris pamīšus izdara gājienus: Andris - pirmo, trešo, piekto, \(\ldots\), Juris - otro, ceturto, sesto, \(\ldots\) . Ar \(n\)-to gājienu \((n=1,\ 2,\ 3,\ \ldots)\) jāapēd vismaz viena, bet ne vairāk par \(n\) konfektēm. Kas apēd pēdējo konfekti, uzvar.
Kurš uzvar, pareizi spēlējot, ja (A) \(k=8\), (B) \(k=64\)?
Uz galda atrodas \(k\) konfektes. Andris un Juris pamīšus izdara gājienus: Andris - pirmo, trešo, piekto, \(\ldots\), Juris - otro, ceturto, sesto, \(\ldots\) . Ar \(n\)-to gājienu \((n=1,\ 2,\ 3,\ \ldots)\) jāapēd vismaz viena, bet ne vairāk par \(n\) konfektēm. Kas apēd pēdējo konfekti, uzvar.
Kurš uzvar, pareizi spēlējot, ja (A) \(k=8\), (B) \(k=64\)?
Divi spēlētāji pamīšus raksta uz tāfeles skaitļa \(216\) naturālos dalītājus. Katrā gājienā jāievēro šādi noteikumi:
Zaudē tas spēlētājs, kurš nevar izdarīt gājienu. Kurš spēlētājs - pirmais vai otrais - vienmēr var uzvarēt?
Divi spēlētāji pamīšus raksta uz tāfeles skaitļa \(216\) naturālos dalītājus. Katrā gājienā jāievēro šādi noteikumi:
Zaudē tas spēlētājs, kurš nevar izdarīt gājienu. Kurš spēlētājs - pirmais vai otrais - vienmēr var uzvarēt?