Sākums

2.3.5.0.0. Spēles invariants

Spēles, kurās uzvarošo stratēģiju var pamatot, izmantojot invariantu (kādu īpašību, kuru spēlētājs ar uzvarošo stratēģiju vienmēr var atjaunot).


LV.AMO.2011.8.5

Jānis un Anna spēlē šādu spēli. Uz tāfeles ir uzrakstīts naturāls skaitlis. Spēlētāji pēc kārtas veic gājienu: no uzrakstītā skaitļa atnem kādu šī skaitļa ciparu (izņemot \(0\)), nodzēš uz tāfeles esošo skaitli un tā vietā uzraksta iegūto starpību. Uzvar tas, kurš pēc sava gājiena iegūst nulli.

Sākumā ir uzrakstīts skaitlis \(2011\), pirmo gājienu izdara Anna. Kurš no spēlētājiem, pareizi spēlējot, uzvarēs? Apraksti, kā uzvarētājam jārīkojas!

Vairāk...

LV.AMO.2003.9.5

Uz galda atrodas \(k\) konfektes. Andris un Juris pamīšus izdara gājienus: Andris - pirmo, trešo, piekto, \(\ldots\), Juris - otro, ceturto, sesto, \(\ldots\) . Ar \(n\)-to gājienu \((n=1,\ 2,\ 3,\ \ldots)\) jāapēd vismaz viena, bet ne vairāk par \(n\) konfektēm. Kas apēd pēdējo konfekti, uzvar.

Kurš uzvar, pareizi spēlējot, ja (A) \(k=8\), (B) \(k=64\)?

Vairāk...

LV.AMO.2019.11.2

Divi spēlētāji pamīšus raksta uz tāfeles skaitļa \(216\) naturālos dalītājus. Katrā gājienā jāievēro šādi noteikumi:

Zaudē tas spēlētājs, kurš nevar izdarīt gājienu. Kurš spēlētājs - pirmais vai otrais - vienmēr var uzvarēt?

Vairāk...