Tēmas: NumTheory
Uz tāfeles uzrakstītas deviņas zvaigznītes * * * * *. Jānis ieraksta kādas zvaigznītes vietā jebkuru ciparu no \(1\) līdz \(9\). Pēc tam Pēteris jebkuru divu citu zvaigznīšu vietā ieraksta divus ciparus (tie var arī atkārtoties). Pēc tam vēl divas reizes viņi atkārto šo darbību. Pēteris uzvar, ja iegūtais deviņciparu skaitlis dalās ar \(37\). Vai Pēteris vienmēr var uzvarēt?