Skaitļa īpašības atkarībā no tā sadalījuma pirmreizinātājos
Pierādīt, ka skaitlis \(1234567891011\ldots175176\) (pēc kārtas uzrakstīti visi naturālie skaitļi no \(1\) līdz \(176\)) nav naturāla skaitļa kvadrāts. (Skaitļa kvadrāts ir skaitļa reizinājums pašam ar sevi.)
Pierādīt, ka skaitlis \(1234567891011\ldots175176\) (pēc kārtas uzrakstīti visi naturālie skaitļi no \(1\) līdz \(176\)) nav naturāla skaitļa kvadrāts. (Skaitļa kvadrāts ir skaitļa reizinājums pašam ar sevi.)
Vai eksistē tāds vesels skaitlis \(x\), ka visi skaitļi
(A) \(x,\ x+23,\ x+45,\ x+121\);
(B) \(x,\ x+23,\ x+46,\ x+121\)
ir veselu skaitļu pakāpes ar naturālu kāpinātāju, kas lielāks nekā \(1\) (kāpinātāji var būt dažādi)?
Vai eksistē tāds vesels skaitlis \(x\), ka visi skaitļi
(A) \(x,\ x+23,\ x+45,\ x+121\);
(B) \(x,\ x+23,\ x+46,\ x+121\)
ir veselu skaitļu pakāpes ar naturālu kāpinātāju, kas lielāks nekā \(1\) (kāpinātāji var būt dažādi)?
Zināms, ka \(x\) un \(y\) ir tādi naturāli skaitļi, ka \(xy^{433}\) ir naturāla skaitļa \(2016.\) pakāpe. Pierādīt, ka arī \(x^{433}y\) ir naturāla skaitļa \(2016.\) pakāpe!