Dalāmības pazīmes, kurās pietiek aplūkot dažus pēdējos ciparus
What is the smallest positive integer that uses only the digits \(0\) and \(2\) in its notation and is divisible by \(15\)?
Kāds ir mazākais naturālais skaitlis, kura pierakstā izmantoti tikai cipari \(0\) un \(2\) un kurš dalās ar \(15\)?
Triju veselu pozitīvu skaitļu summa ir \(407\). Ar kādu lielāko daudzumu nuļļu var beigties šo skaitļu reizinājums?
Dots, ka \(x\) un \(y\) - tādi naturāli skaitļi, ka \(x \cdot y=10^{12}\). Vai var būt, ka ne \(x\), ne \(y\) nesatur savā pierakstā nevienu ciparu \(0\)?
Pierādīt, ka skaitlis \(1234567891011\ldots175176\) (pēc kārtas uzrakstīti visi naturālie skaitļi no \(1\) līdz \(176\)) nav naturāla skaitļa kvadrāts. (Skaitļa kvadrāts ir skaitļa reizinājums pašam ar sevi.)
The following text was written on the board: \(A869B\). Each of the letters \(A\) and \(B\) must be replaced by one digit (they may or may not be the same) so that the resulting five-digit number is divisible by \(15\). In how many ways can you do this?
Uz tāfeles bija uzrakstīts šāds teksts: \(A869B\). Katrs no burtiem \(A\) un \(B\) jāaizstāj ar vienu ciparu (tie var būt arī vienādi) tā, lai iegūtais piecciparu skaitlis dalītos ar \(15\). Cik dažādos veidos to var izdarīt?
Zināms, ka skaitlis dalās ar \(2016\) un ka visi tā cipari ir dažādi. Kāds ir lielākais ciparu skaits, kas var būt šajā skaitlī?
Desmitciparu skaitlī vienādus ciparus aizvietojot ar vienādiem burtiem, bet dažādus- ar dažādiem, ieguva vārdu MATEMĀTIKA (īsais " \(A\) " un garais " \(Ā\) " aizstāj atšķirīgus ciparus). Papildus zināms, ka skaitlis \(\overline{MA}\) dalās ar \(2\), \(\overline{MAT}\)- ar \(3\), \(\overline{MATE}\)- ar \(4\), \(\overline{\text { MATEM }}\)- ar \(5\), \(\overline{MATEM \bar{A}}\)- ar \(6\), \(\overline{MATEM \bar{A}T}\)- ar \(7\), \(\overline{MATEM \bar{A}TI}\)- ar \(8\), \(\overline{MATEM \bar{A}TIK}\)- ar \(9\), \(\overline{MATEM \bar{A}TIKA}\)- ar \(10\). Noteikt, kāds bija sākotnējais desmitciparu skaitlis!