Dalāmības pazīmes ar \(3\) un \(9\)
What is the smallest positive integer that uses only the digits \(0\) and \(2\) in its notation and is divisible by \(15\)?
Kāds ir mazākais naturālais skaitlis, kura pierakstā izmantoti tikai cipari \(0\) un \(2\) un kurš dalās ar \(15\)?
(A) Atrast tādu naturālu skaitli, kura ciparu summa ir \(13\), pēdējie divi cipari ir \(13\) un kurš dalās ar \(13\).
(B) Vai var atrast tādu naturālu skaitli, kura ciparu summa ir \(11\), pēdējie divi cipari ir \(11\) un kurš dalās ar \(11\)?
The following text was written on the board: \(A869B\). Each of the letters \(A\) and \(B\) must be replaced by one digit (they may or may not be the same) so that the resulting five-digit number is divisible by \(15\). In how many ways can you do this?
Uz tāfeles bija uzrakstīts šāds teksts: \(A869B\). Katrs no burtiem \(A\) un \(B\) jāaizstāj ar vienu ciparu (tie var būt arī vienādi) tā, lai iegūtais piecciparu skaitlis dalītos ar \(15\). Cik dažādos veidos to var izdarīt?
Dots naturāls skaitlis, kas dalās ar \(99\) un kura pēdējais cipars nav \(0\). Pierādi, ka, uzrakstot šī skaitļa ciparus pretējā secībā, arī iegūst skaitli, kas dalās ar \(99\).
Zināms, ka skaitlis dalās ar \(2016\) un ka visi tā cipari ir dažādi. Kāds ir lielākais ciparu skaits, kas var būt šajā skaitlī?
Četrciparu skaitlim pārlika ciparus citā kārtībā. Pierādīt: sākotnējā un iegūtā skaitļa starpība dalās ar \(9\).
Piecciparu skaitlis \(B\) ir iegūts no mazāka piecciparu skaitļa \(A\), samainot vietām tā ciparus. Pierādīt, ka \(B-A\) dalās ar \(9\).
Pierādīt, ja \(x\) - naturāls skaitlis, tad \(x^{8}-x^{2}\) dalās ar \(252\).
Ar naturālu skaitli atļauts veikt šādas darbības:
Vai, atkārtoti izpildot šīs darbības, no skaitļa \(30\) var iegūt skaitli \(2015\)?
Desmitciparu skaitlī vienādus ciparus aizvietojot ar vienādiem burtiem, bet dažādus- ar dažādiem, ieguva vārdu MATEMĀTIKA (īsais " \(A\) " un garais " \(Ā\) " aizstāj atšķirīgus ciparus). Papildus zināms, ka skaitlis \(\overline{MA}\) dalās ar \(2\), \(\overline{MAT}\)- ar \(3\), \(\overline{MATE}\)- ar \(4\), \(\overline{\text { MATEM }}\)- ar \(5\), \(\overline{MATEM \bar{A}}\)- ar \(6\), \(\overline{MATEM \bar{A}T}\)- ar \(7\), \(\overline{MATEM \bar{A}TI}\)- ar \(8\), \(\overline{MATEM \bar{A}TIK}\)- ar \(9\), \(\overline{MATEM \bar{A}TIKA}\)- ar \(10\). Noteikt, kāds bija sākotnējais desmitciparu skaitlis!
No cipariem \(1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9\), katru izmantojot divas reizes, izveidoti trīs sešciparu skaitļi. Ar kādu lielāko nuļļu skaitu var beigties trīs izveidoto skaitļu summa?
Skaitļus \(a,\ b,\ c\) sauksim par skaistu trijnieku, ja tiem piemīt šādas īpašības:
Piemēram, skaists trijnieks ir \(8,\ 9,\ 10\).
(A) Atrast tādu skaistu trijnieku, kurā mazākais skaitlis ir lielāks nekā \(10\).
(B) Pierādīt, ka eksistē bezgalīgi daudz skaistu trijnieku!