Sākums

4.1.1.1.0. Dalāmības pazīmes ar 2, 4, 8

Skaitlis dalās ar \(2**k\) tad un tikai tad, ja pēdējie \(k\) cipari dalās ar \(2**k\)


LV.AMO.2006.8.3

Naturāla skaitļa \(x\) ciparu summu apzīmēsim ar \(S(x)\). Pieņemsim, ka \(n\) - tāds naturāls skaitlis, kam vienlaicīgi izpildās īpašības \(S(n)=10\) un \(S(5n)=5\).

(A) atrodiet kaut vienu tādu skaitli,
(B) vai tādu skaitļu ir bezgalīgi daudz?
(C) vai kāds no tādiem skaitļiem ir nepāra?

Vairāk...

LV.NOL.2016.8.2

Karlīna uzrakstīja divus skaitļus, kuru pierakstā nav izmantots cipars \(0\). Katru ciparu viņa aizstāja ar burtu: dažādus ciparus - ar dažādiem burtiem, vienādus - ar vienādiem. Viens no uzrakstītajiem skaitļiem \(DUBĻUNNN\) dalās ar \(104\). Pierādi, ka otrais skaitlis \(BURBUĻUVANNA\) nedalās ar \(56\).

Vairāk...

LV.NOL.2017.10.5

Desmitciparu skaitlī vienādus ciparus aizvietojot ar vienādiem burtiem, bet dažādus- ar dažādiem, ieguva vārdu MATEMĀTIKA (īsais " \(A\) " un garais " \(Ā\) " aizstāj atšķirīgus ciparus). Papildus zināms, ka skaitlis \(\overline{MA}\) dalās ar \(2\), \(\overline{MAT}\)- ar \(3\), \(\overline{MATE}\)- ar \(4\), \(\overline{\text { MATEM }}\)- ar \(5\), \(\overline{MATEM \bar{A}}\)- ar \(6\), \(\overline{MATEM \bar{A}T}\)- ar \(7\), \(\overline{MATEM \bar{A}TI}\)- ar \(8\), \(\overline{MATEM \bar{A}TIK}\)- ar \(9\), \(\overline{MATEM \bar{A}TIKA}\)- ar \(10\). Noteikt, kāds bija sākotnējais desmitciparu skaitlis!

Vairāk...

LV.NOL.2019.10.5

Atrast visus pirmskaitļu pārus \((m, n)\), kuriem \(20m+18n=2018\).

Vairāk...

LV.VOL.2017.10.2

Dots pirmskaitlis, kas satur vismaz \(4\) dažādus ciparus. Pierādīt, ka tā ciparus var pārkārtot citā secībā tā, lai jauniegūtais skaitlis nebūtu pirmskaitlis!

Vairāk...

LV.VOL.2018.10.3

Skaitļus \(a,\ b,\ c\) sauksim par skaistu trijnieku, ja tiem piemīt šādas īpašības:

Piemēram, skaists trijnieks ir \(8,\ 9,\ 10\).

(A) Atrast tādu skaistu trijnieku, kurā mazākais skaitlis ir lielāks nekā \(10\).

(B) Pierādīt, ka eksistē bezgalīgi daudz skaistu trijnieku!

Vairāk...