Kādai mazākajai naturālai \(n\) vērtībai skaitli \(10^{n}\) iespējams izteikt kā sešu naturālu skaitļu reizinājumu tā, ka neviens no tiem nav mazāks kā \(10\) un to visu pēdējie cipari ir dažādi (tas ir, nevienam no tiem pēdējais cipars nesakrīt ar kāda cita skaitļa pēdējo ciparu)?