Summas kvadrāta formula \((a+b)^2 = a^2 + 2ab + b^2\); kvadrātu starpība \(a^2 - b^2\); pakāpju īpašības, piemēram, \((a^m)^n = a^{mn}\).
Dots, ka \(x\) un \(y\) - tādi naturāli skaitļi, ka \(x \cdot y=10^{12}\). Vai var būt, ka ne \(x\), ne \(y\) nesatur savā pierakstā nevienu ciparu \(0\)?
Kurus naturālos skaitļus \(n\) var izsacīt formā \(n=\frac{x}{y}\), kur \(x=a^{5},\ y=b^{3}\), \(a\) un \(b\) - naturāli skaitļi?
Kurus naturālos skaitļus \(n\) var izsacīt formā \(n=\frac{x}{y}\), kur \(x=a^{3},\ y=b^{4},\ a\) un \(b\) - naturāli skaitļi?
Kurus naturālos skaitļus \(n\) var izsacīt formā \(n=\frac{x}{y}\), kur \(x=a^{3}, y=b^{5}\), \(a\) un \(b\) naturāli skaitļi?
Uz katras no divām lapām jāuzraksta pa \(n\) veseliem pozitīviem skaitļiem. Visiem \(2n\) uzrakstītajiem skaitļiem jābūt dažādiem. Pie tam uz lapām uzrakstīto skaitļu summām jābūt vienādām savā starpā, un uzrakstīto skaitļu kvadrātu summām arī jābūt vienādām savā starpā.
Vai tas iespējams, ja (A) \(n=3\), (B) \(n=4\), (C) \(n=2003\)?
Nosaki, vai izteiksmes \(\sqrt{6+2 \sqrt{5}}-\sqrt{6-2 \sqrt{5}}\) vērtība ir racionāls skaitlis!
Atrast vienu naturālu skaitli, kas lielāks nekā \(2015\) un ko nevar izteikt kā naturāla skaitļa kvadrāta un pirmskaitļa summu.
Aprēķini dotās izteiksmes vērtību!
\[\frac{2000016 \cdot 1999984}{5^{12} \cdot 2^{13}-128}\]
Kuru no skaitļiem \(102^{2} \cdot 103^{2} \cdot \ldots \cdot 199^{2}\) un \(\left(102^{2}-1\right)\left(103^{2}-1\right) \ldots\left(199^{2}-1\right)\) sadalot pirmskaitļu reizinājumā, iegūst vairāk dažādu pirmskaitļu? Par cik vairāk?
(Paskaidrojums: \(24=2 \cdot 2 \cdot 2 \cdot 3\) satur divus dažādus pirmskaitļus- \(2\) un \(3\).)
Skaitli \(3999991\) uzrakstīt kā divu veselu skaitļu reizinājumu tā, lai katrs no reizinātājiem ir lielāks nekā \(1\).
Skaitli \(8999999\) uzraksti kā divu veselu skaitļu reizinājumu tā, lai katrs no reizinātājiem ir lielāks nekā \(1\).
Kvadrātā \(3 \times 3\) rūtiņas ieraksti deviņus dažādus naturālus skaitļus tā, lai katrā rindiņā ierakstīto skaitļu reizinājums un katrā kolonnā ierakstīto skaitļu reizinājums būtu viens un tas pats.
Aritmētiskās progresijas četri pēc kārtas ņemti locekļi ir veseli skaitļi \(A, B, C\) un \(D\). Pierādīt, ka \(A^{2}+2B^{2}+3C^{2}+4D^{2}\) var izteikt kā divu veselu skaitļu kvadrātu summu!
Kādām naturālām \(n\) vērtībām izteiksme \(n^{2}+n+19\) ir kāda naturāla skaitļa kvadrāts?
Atrisināt naturālos skaitļos vienādojumu \(x^{3}=y!+2\).
Pierādīt, ka katram naturālam skaitlim \(n(n>1)\) var atrast tādus naturālus skaitļus \(x\) un \(y(x \leq y)\), ka
\[\frac{1}{n}=\frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}+\cdots+\frac{1}{y(y+1)}\]