Virknē augošā kārtībā izrakstīti naturālie skaitļi no \(1\) līdz \(2004\) ieskaitot, katrs vienu reizi. Izsvītrojam no tās skaitļus, kas atrodas \(1.,\ 4.,\ 7.,\ 10.,\ \ldots\) vietās. No palikušās virknes atkal izsvītrojam skaitļus, kas tajā atrodas \(1.,\ 4.,\ 7.,\ \ldots\) vietās. Ar iegūto virkni rīkojamies tāpat, utt., kamēr paliek neizsvītrots viens skaitlis. Kurš tas ir?
Virknē augošā kārtībā izrakstīti naturālie skaitļi no \(1\) līdz \(2004\) ieskaitot, katrs vienu reizi. Izsvītrojam no tās skaitļus, kas atrodas \(1.,\ 4.,\ 7.,\ 10.,\ \ldots\) vietās. No palikušās virknes atkal izsvītrojam skaitļus, kas tajā atrodas \(1.,\ 4.,\ 7.,\ \ldots\) vietās. Ar iegūto virkni rīkojamies tāpat, utt., kamēr paliek neizsvītrots viens skaitlis. Kurš tas ir?
Ir zināms, ka skaitļa \(2^{200}\) decimālajā pierakstā ir \(61\) cipars. Cik daudziem no skaitļiem \(2^{1};\ 2^{2};\ 2^{3};\ \ldots;\ 2^{199};\ 2^{200}\) decimālais pieraksts sākas ar ciparu \(1\)?
Ir zināms, ka skaitļa \(2^{200}\) decimālajā pierakstā ir \(61\) cipars. Cik daudziem no skaitļiem \(2^{1};\ 2^{2};\ 2^{3};\ \ldots;\ 2^{199};\ 2^{200}\) decimālais pieraksts sākas ar ciparu \(1\)?
Ir zināms, ka skaitļa \(2^{100}\) decimālajā pierakstā ir \(31\) cipars. Cik daudziem no skaitļiem \(2^{1};\ 2^{2};\ 2^{3};\ \ldots;\ 2^{99};\ 2^{100}\) decimālais pieraksts sākas ar ciparu \(1\)?
Ir zināms, ka skaitļa \(2^{100}\) decimālajā pierakstā ir \(31\) cipars. Cik daudziem no skaitļiem \(2^{1};\ 2^{2};\ 2^{3};\ \ldots;\ 2^{99};\ 2^{100}\) decimālais pieraksts sākas ar ciparu \(1\)?
Dota Fibonači skaitļu virkne \(x_{1}=x_{2}=1, x_{i+2}=x_{i}+x_{i+1}\).
Pierādīt, ka šajā virknē ir bezgalīgi daudz skaitļu, kas nav naturāla skaitļa kvadrāti.
Dota Fibonači skaitļu virkne \(x_{1}=x_{2}=1, x_{i+2}=x_{i}+x_{i+1}\).
Pierādīt, ka šajā virknē ir bezgalīgi daudz skaitļu, kas nav naturāla skaitļa kvadrāti.