Izteikt garu skaitli divos gabalos, piereizinot vienu no tiem ar \(10^k\)
Andrim vajadzēja sareizināt divus dažādus pozitīvus trīsciparu skaitļus. Izklaidības pēc viņš tos vienkārši uzrakstīja vienu otram galā. Iegūtais sešciparu skaitlis izrādījās \(3\) reizes lielāks par reizinājumu, kuru Andrim vajadzēja iegūt. Kādu sešciparu skaitli Andris uzrakstīja?
Dots, ka \(A\) un \(B\) - naturāli divciparu skaitļi. Skaitli \(X\) iegūst, pierakstot skaitlim \(A\) galā skaitli \(B\); skaitli \(Y\) iegūst, pierakstot skaitlim \(B\) galā skaitli \(A\). Dots, ka \(X-Y\) dalās ar \(91\). Pierādīt, ka \(A=B\).
Leonards izvēlējās patvaļīgu trīsciparu skaitli, pareizināja to ar \(2\) un tam galā pierakstīja sākotnējo skaitli. Vai viņa jauniegūtais skaitlis noteikti dalās ar (A) \(17\); (B) \(23\)?
Dots pirmskaitlis, kas satur vismaz \(4\) dažādus ciparus. Pierādīt, ka tā ciparus var pārkārtot citā secībā tā, lai jauniegūtais skaitlis nebūtu pirmskaitlis!