Dalāmības pazīmes ar dažādiem citiem skaitļiem
Pierādīt, ka \(1004041\) nav pirmskaitlis.
Cik starp pirmajiem \(2013\) naturālajiem skaitļiem ir tādu skaitļu \(x\), ka skaitlis \(x(x+1)(x+2)\) dalās ar \(111\)?
Cik starp pirmajiem \(2014\) naturālajiem skaitļiem ir tādu skaitļu \(x\), ka skaitlis \(x(x+1)(x+2)\) dalās ar \(87\)?
Dots naturāls skaitlis, kas dalās ar \(99\) un kura pēdējais cipars nav \(0\). Pierādi, ka, uzrakstot šī skaitļa ciparus pretējā secībā, arī iegūst skaitli, kas dalās ar \(99\).
Zināms, ka skaitlis dalās ar \(2016\) un ka visi tā cipari ir dažādi. Kāds ir lielākais ciparu skaits, kas var būt šajā skaitlī?
Desmitciparu skaitlī vienādus ciparus aizvietojot ar vienādiem burtiem, bet dažādus- ar dažādiem, ieguva vārdu MATEMĀTIKA (īsais " \(A\) " un garais " \(Ā\) " aizstāj atšķirīgus ciparus). Papildus zināms, ka skaitlis \(\overline{MA}\) dalās ar \(2\), \(\overline{MAT}\)- ar \(3\), \(\overline{MATE}\)- ar \(4\), \(\overline{\text { MATEM }}\)- ar \(5\), \(\overline{MATEM \bar{A}}\)- ar \(6\), \(\overline{MATEM \bar{A}T}\)- ar \(7\), \(\overline{MATEM \bar{A}TI}\)- ar \(8\), \(\overline{MATEM \bar{A}TIK}\)- ar \(9\), \(\overline{MATEM \bar{A}TIKA}\)- ar \(10\). Noteikt, kāds bija sākotnējais desmitciparu skaitlis!
Pierādīt, ka nevienai naturālai \(n\) vērtībai izteiksmes \(13^{n}+7^{n}+2019\) vērtība nav naturāla skaitļa kvadrāts!