Skaitlis dalās ar \(11\) tad un tikai tad, ja ciparu summa pāru pozīcijās mīnus ciparu summa nepāru pozīcijās dalās ar 11
(A) Atrast tādu naturālu skaitli, kura ciparu summa ir \(13\), pēdējie divi cipari ir \(13\) un kurš dalās ar \(13\).
(B) Vai var atrast tādu naturālu skaitli, kura ciparu summa ir \(11\), pēdējie divi cipari ir \(11\) un kurš dalās ar \(11\)?
Dots naturāls skaitlis, kas dalās ar \(99\) un kura pēdējais cipars nav \(0\). Pierādi, ka, uzrakstot šī skaitļa ciparus pretējā secībā, arī iegūst skaitli, kas dalās ar \(99\).
Vai naturāla skaitļa ciparu reizinājums var būt skaitlis \(\overline{aabbcc}\)? (Pieraksts \(\overline{kmn}\) nozīmē, ka skaitlī ir \(k\) simti, \(m\) desmiti un \(n\) vieni.)