Vienādojuma \(ax+by=d\) atrisināmība veselos skaitļos. Norēķini ar 2 veidu monētām.
\(250\) tickets were made for the theatre performance and at least half of them were sold. It is known that exactly a third of the audience were schoolchildren, exactly one fifth of the audience were students and exactly one-seventh were retirees. How many tickets were sold?
Uz teātra izrādi tika izgatavotas \(250\) biļetes un vismaz puse no biļetēm tika pārdotas. Zināms, ka tieši trešdaļa no skatītājiem bija skolēni, tieši piektdaļa – studenti un tieši septītdaļa – pensionāri. Cik biļetes tika pārdotas?
\(250\) tickets were made for the theatre performance and at least half of them were sold. It is known that exactly a third of the audience were schoolchildren, exactly one fifth of the audience were students and exactly one-seventh were retirees. How many tickets were sold?
Uz teātra izrādi tika izgatavotas \(250\) biļetes un vismaz puse no biļetēm tika pārdotas. Zināms, ka tieši trešdaļa no skatītājiem bija skolēni, tieši piektdaļa – studenti un tieši septītdaļa – pensionāri. Cik biļetes tika pārdotas?
Atrodi naturālu skaitli, kuru, dalot ar \(2010\), atlikumā iegūst \(13\), bet, dalot ar \(2011\), atlikumā iegūst \(3\).
Atrodi naturālu skaitli, kuru, dalot ar \(2010\), atlikumā iegūst \(13\), bet, dalot ar \(2011\), atlikumā iegūst \(3\).
Kurus naturālos skaitļus \(n\) var izsacīt formā \(n=\frac{x}{y}\), kur \(x=a^{5},\ y=b^{3}\), \(a\) un \(b\) - naturāli skaitļi?
Kurus naturālos skaitļus \(n\) var izsacīt formā \(n=\frac{x}{y}\), kur \(x=a^{3},\ y=b^{4},\ a\) un \(b\) - naturāli skaitļi?
Kurus naturālos skaitļus \(n\) var izsacīt formā \(n=\frac{x}{y}\), kur \(x=a^{3}, y=b^{5}\), \(a\) un \(b\) naturāli skaitļi?
Pierādīt, ja no trim naturāliem skaitļiem \(n\); \(n+11\) un \(n+22\) divi ir pirmskaitļi, tad trešais skaitlis dalās ar \(6\).
Pierādīt, ja no trim naturāliem skaitļiem \(n\); \(n+11\) un \(n+22\) divi ir pirmskaitļi, tad trešais skaitlis dalās ar \(6\).
Doti seši pēc kārtas sekojoši naturāli skaitļi. Pierādīt, ka var atrast tādu pirmskaitli \(p\), ka tieši viens no dotajiem skaitļiem dalās ar \(p\).
Doti seši pēc kārtas sekojoši naturāli skaitļi. Pierādīt, ka var atrast tādu pirmskaitli \(p\), ka tieši viens no dotajiem skaitļiem dalās ar \(p\).
Ir pieejams neierobežots daudzums \(7\) un \(13\) centu pastmarku, kuras izmanto pasta sūtījumu apmaksāšanai. Diemžēl dažas summas nav iespējams apmaksāt tikai ar šīm pastmarkām (piemēram, ja sūtījums maksā \(6,\ 8\) vai \(25\) centus). Kāda ir lielākā summa, kuru nav iespējams apmaksāt izmantojot tikai šīs pastmarkas?
Ir pieejams neierobežots daudzums \(7\) un \(13\) centu pastmarku, kuras izmanto pasta sūtījumu apmaksāšanai. Diemžēl dažas summas nav iespējams apmaksāt tikai ar šīm pastmarkām (piemēram, ja sūtījums maksā \(6,\ 8\) vai \(25\) centus). Kāda ir lielākā summa, kuru nav iespējams apmaksāt izmantojot tikai šīs pastmarkas?