Dots, ka \(n>1\) - naturāls skaitlis, kas nav pirmskaitlis. Pierādīt, ka var atrast vismaz trīs dažādus naturālus skaitļus \(a_{1}, a_{2}, \ldots, a_{k}\), kas apmierina sakarību \(a_{1}+a_{2}+\ldots+a_{k}=n \cdot\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{k}}\right)\).
Dots, ka \(n>1\) - naturāls skaitlis, kas nav pirmskaitlis. Pierādīt, ka var atrast vismaz trīs dažādus naturālus skaitļus \(a_{1}, a_{2}, \ldots, a_{k}\), kas apmierina sakarību \(a_{1}+a_{2}+\ldots+a_{k}=n \cdot\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{k}}\right)\).
Kuru no skaitļiem \(102^{2} \cdot 103^{2} \cdot \ldots \cdot 199^{2}\) un \(\left(102^{2}-1\right)\left(103^{2}-1\right) \ldots\left(199^{2}-1\right)\) sadalot pirmskaitļu reizinājumā, iegūst vairāk dažādu pirmskaitļu? Par cik vairāk?
(Paskaidrojums: \(24=2 \cdot 2 \cdot 2 \cdot 3\) satur divus dažādus pirmskaitļus- \(2\) un \(3\).)
Kuru no skaitļiem \(102^{2} \cdot 103^{2} \cdot \ldots \cdot 199^{2}\) un \(\left(102^{2}-1\right)\left(103^{2}-1\right) \ldots\left(199^{2}-1\right)\) sadalot pirmskaitļu reizinājumā, iegūst vairāk dažādu pirmskaitļu? Par cik vairāk?
(Paskaidrojums: \(24=2 \cdot 2 \cdot 2 \cdot 3\) satur divus dažādus pirmskaitļus- \(2\) un \(3\).)
Pierādīt, ka katram naturālam skaitlim \(n(n>1)\) var atrast tādus naturālus skaitļus \(x\) un \(y(x \leq y)\), ka
\[\frac{1}{n}=\frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}+\cdots+\frac{1}{y(y+1)}\]
Pierādīt, ka katram naturālam skaitlim \(n(n>1)\) var atrast tādus naturālus skaitļus \(x\) un \(y(x \leq y)\), ka
\[\frac{1}{n}=\frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}+\cdots+\frac{1}{y(y+1)}\]